The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction
نویسندگان
چکیده
Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC). The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN) are placed in tissue areas at the lower end of this range ("hypoxic" SCN), to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal) within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.
منابع مشابه
Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملHypoxia and Hypoxia-Inducible Factors in Leukemias
Despite huge improvements in the treatment of leukemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and therefore reestablish the full tumor. The marrow microenvironment contributes considerably in supporting the protection and developmen...
متن کاملLoss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche
BACKGROUND Leukemic and mesenchymal stem cells interact in the leukemic microenvironment and affect each other differently. This interplay has also important implications for the hematopoietic stem cell (HSC) biology and function. This study evaluated human HSC self-renewal potential and quiescence in an in vitro leukemic niche without leukemic cells. METHODS A leukemic niche was established ...
متن کاملMicroenvironment and its role in acquire drug resistance of leukemia treatment
Bone marrow niche is the microenvironment where the leukemic cells residue and it support cell proliferation, metastasis, and drug resistance by secretion of numerous factors including cytokines. When leukemic cells grow, they disrupt normal hematopoietic progenitor cell (HPC) bone marrow niches and create abnormal microenvironments. Also, niches recently have been linked to the development of ...
متن کاملMicroenvironment and its role in acquiring drug resistance of leukemia treatment
Bone marrow niche is the microenvironment where the leukemic cells residue and it support cell proliferation, metastasis and drug resistance by secretion of numerous factors including cytokines. When leukemic cells grow, they disrupt normal hematopoietic progenitor cell (HPC) bone marrow niches and create abnormal microenvironments. Also, niches recently have been linked to the development of d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017